高中数学说课稿

时间:2025-09-19 19:58:20
高中数学说课稿 15篇

高中数学说课稿 15篇

作为一名优秀的教育工作者,时常需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。优秀的说课稿都具备一些什么特点呢?以下是小编帮大家整理的高中数学说课稿 ,仅供参考,希望能够帮助到大家。

高中数学说课稿 1

我今天说课的课题是新课标高中数学人教版A版必修第二册第三章“3.1.1倾斜角与斜率”。我说课的程序主要由说教材、说教法、说学法、说教学程序这四个部分组成。

一、说教材:

1、教材分析:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。

2、教学目标

根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:

(1)知识与技能目标:

了解直线的方程和方程的直线的概念;在新的`问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。

(2)过程与方法目标:

引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力

(3)情感、态度与价值观目标:

在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。

3、教学重点、难点

(1)教学重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。

(2)教学难点:斜率公式的推导

二、说教法

课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用观察发现、启发引导、探索实验相结合的教学方法。启发引导学生积极的思考并对学生的思维进行调控,使学生优化思维过程;在此基础上,通过学生交流与合作,从而扩展自己的数学知识和使用数学知识及数学工具的能力,实现自觉地、主动地、积极地学习。

三、说学法

在实际教学中,根据学生对问题的感受程度不同,学习热情、身心特点等,对学生进行针对性的学法指导。主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生自己动手、参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

四、说教学程序:

1、导入新课:

提出问题:如何确定一条直线的位置?

(1)两点确定一条直线;

(2)一点能确定一条直线吗?

过一点P可以作无数条直线,这些直线的倾斜程度不同,如何描述直线的倾斜程度?本节课将解决这个问题。

设计意图:打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,直线的倾斜角这一概念的产生是因为研究直线的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。

2、探究发现:

(1)直线的倾斜角:

有新课导入直接引出此概念,学生易于接受,但是容易忽视其中的重点字。因此重点强调定义的几个注意点:①x轴正半轴;②直线向上方向;③当直线与x轴平行或重合时,直线的倾斜角为0度。由此得出直线倾斜角的取值范围。

(2)直线的确定方法:

确定平面直角坐标系中一条直线位置的几何要素:直线上的一个定点以及它的倾斜角,二者缺一不可。

(3)直线的斜率:

注:直线的倾斜角与斜率的区别:

所有的直线都有倾斜角;但是不是所有直线都有斜率(倾斜角为90°的直线没有斜率,因为90°的正切不存在。)

(4)由两点确定的直线的斜率:

先让学生自主探究、学生之间互相交流,然后再由师生共同归纳得出结论:

经过两点P1(x1.y1),P2(x2,y2)直线的斜率公式:(x1≠x2)。

3、学用结合:

(1)例题讲解:P89-90/例题1和例题2。

例题的讲解主要关注思路的点拨以及解题过程的规范书写。

(2)课堂练习:

P91/练习第1、2题

4、总结归纳:

直线的倾斜角直线的斜率直线的斜率公式

定义

取值范围

5、布置作业:P 91/练习第3、4题。

高中数学说课稿 2

教学目标:

(1)至少掌握点到直线的距离公式的一种推导方法,能用公式来求点到直线距离。

(2)培养学生探究能力和由特殊到一般的研究问题的能力。

(3)认识事物(知识)之间相互联系、互相转化的辩证法思想,培养学生转化的思想和综合应用知识分析问题解决问题的能力。

(4)培养学生团队合作精神,培养学生个性品质,培养学生勇于探究的科学精神。

教学重点:点到直线的距离公式推导及公式的应用

教学难点:点到直线的距离公式的推导

教学方法:启发引导法、讨论法

学习方法:任务驱动下的研究性学习

教学时间:45分钟

教学过程:

1、教师提出问题,引发认知冲突(约5分钟)

问题:假定在直角坐标系上,已知一个定点P(x0,y0)和一条定直线l:AxByC=0,那么如何求点P到直线l的距离d?请学生思考并回答。

学生1:先过点P作直线l的垂线,垂足为Q,则|PQ|就是点P到直线l的距离d;然后用点斜式写出垂线方程,并与原直线方程联立方程组,此方程组的解就是点Q的坐标;最后利用两点间距离公式求出|PQ|。

接着,教师用投影出示下列5道题(尝试性题组),请5位学生上黑板练习(第(4)题请一位运算能力强的同学,其余学生在下面自己练习,每做完一题立即讲评):

(1)求P(1,2)到直线l:x=3的距离d;(答案:d=2)

(2)求P(x0,y0)到直线l:ByC=0(B≠0)的距离d;(答案: ……此处隐藏28639个字……数学概念形成过程中蕴含的基本数学思想:"函数思想、数形结合思想、特殊化思想",使之获得内心感受,提高了基本技能和解决问题的能力,也可以逐渐学会辩证地看待问题。

高中数学说课稿 15

一、教材分析

1、教材所处的地位和作用

奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

2、学情分析

从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

3、教学目标

基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

【知识与技能】

1、能判断一些简单函数的奇偶性。

2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

【过程与方法】

经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

【情感、态度与价值观】

通过自主探索,体会数形结合的思想,感受数学的对称美。

从课堂反应看,基本上达到了预期效果。

4、教学重点和难点

重点:函数奇偶性的概念和几何意义。

几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

难点:奇偶性概念的数学化提炼过程。

由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。

二、教法与学法分析

1、教法

根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。

2、学法

让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。

三、教学过程

具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。

(一)设疑导入、观图激趣

由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。

用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

(二)指导观察、形成概念

在这一环节中共设计了2个探究活动。

探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。

在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

(三) 学生探索、领会定义

探究3 下列函数图象具有奇偶性吗?

设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

(四)知识应用,巩固提高

在这一环节我设计了4道题

例1判断下列函数的奇偶性

选例1的`第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。

例1设计意图是归纳出判断奇偶性的步骤:

(1) 先求定义域,看是否关于原点对称;

(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。

例2 判断下列函数的奇偶性:

例3 判断下列函数的奇偶性:

例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?

例4(1)判断函数的奇偶性。

(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

例4设计意图加强函数奇偶性的几何意义的应用。

在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。

(五)总结反馈

在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。

(六)分层作业,学以致用

必做题:课本第36页练习第1-2题。

选做题:课本第39页习题1、3A组第6题。

思考题:课本第39页习题1、3B组第3题。

设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。

《高中数学说课稿 15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式