有关高中数学说课稿汇编十篇
作为一位杰出的教职工,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。说课稿要怎么写呢?以下是小编精心整理的高中数学说课稿10篇,希望能够帮助到大家。
高中数学说课稿 篇1一、说教材:
1. 地位及作用:
“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。
2. 教学目标:
根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:
(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。
(2)能力目标:
(a)培养学生灵活应用知识的能力。
(b) 培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。
3. 重点、难点和关键点:
因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。
二、 说教材处理
为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:
1.学生状况分析及对策:
2.教材内容的组织和安排:
本节教材的'处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:
(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业
三、 说教法和学法
1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。
2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。
四、 教学过程
教学环节
3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。
例1属基础,主要反馈学生掌握基本知识的程度。
例2可强化基本技能训练和基本知识的灵活运用。
小结
为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。
1.椭圆的定义和标准方程及其应用。
2.椭圆标准方程中a,b,c诸关系。
3.求椭圆方程常用方法和基本思路。
通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。
布置作业
(1) 77页——78页 1,2,3,79页 11
(2) 预习下节内容
巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。
高中数学说课稿 篇2一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立体几何最重要的概念之一。二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面垂直关系的一个汇集点。搞好本节课的学习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。教学大纲明确要求要让学生掌握二面角及其平面角的概念和运用。
2、教学目标
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标:
认知目标:
(1)使学生正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:以培养学生的创新能力和动手能力为重点。
(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
教育目标:
(1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。
(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
3、本节课教学的重、难点是两个过程的教学:
(1)二面角的平面角概念的形成过程。
(2)寻找二面角的平面角的方法的发现过程。
其理由如下:
(1)现行教材省略了概念的形成过程和方法的发现过程,没有反映出科学认识产生的辩证过程,与学生的认知规律相悖,给学生的学习造成了很大的困难,非常不利于学生创新能力、独立思考能力以及动手能力的培养。
(2)现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的思维状态,进而培养他们独立思考和大胆求索的精神,这样才能全面落实本节课的教学目标。
二、指导思想和教学方法
在设计本教学时,主要贯彻了以下两个思想:
1、树立以学生发展为本的思想。通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与概念和方法的形成过程。2、坚持协同创新原则。把教材创新、教法创新以及学法创新有机地统一起来,因为只有教师创新地教,学生创新地学,才能营建一个有利于创新能力培养的良好环境。
首先是教材创新。
(1)在二面角的平面角概念引入上,我变课本上的“直接给出定义”为“类比——猜想——操作——定义”,也就是变封闭的、逻辑演绎体系为开放的.、探索性的发现过程。
(2)在引入定义之后,例题讲解之前,引导学生发现寻找二面角的平面角的方法,为例题做好铺垫。
(3)重新编排例题。
其次是教法创新。采用多种创新的教学方法,包括问题 ……此处隐藏18290个字……具:直尺、三角板
3. 教学程序
时,此时又怎样求点A到直线
的距离呢?
生: 定性回答
点明课题,使学生明确学习目标。
创设“不愤不启,不悱不发”的学习情景。
练习
比较
发现
归纳
讨论
的距离为d
(1) A(2,4),
:x = 3, d=_____
(2) A(2,4),
:y = 3,d=_____
(3) A(2,4),
:x – y = 0,d=_____
尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。
请三个同学上黑板板演
师: 请这三位同学分别说说自己的解题思路。
生: 回答
教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。
视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的思路吗”。
说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形)
师:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线
:Ax+By+C=0(A,B≠0)的距离又怎样求?
教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗?
生:方案一:根据定义
方案二:根据等积法
方案三: ......
设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。
师生一起进行比较,锁定方案二进行推证。
“师生共作”体现新型师生观,且//时,又怎样求这两线的距离?
生:计算得线线距离公式
师:板书点到直线的距离公式,两平行线间距离公式
“没有新知识,新知识均是旧知识的组合”,创设此问可发挥学生的创造性,增加学生的成就感。
反思小结
经验共享
(六 分 钟)
师: 通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问?
生: 讨论,回答。
对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。
共同进步,各取所长。
练习
(五 分 钟)
P53 练习 1, 2,3
熟练的用公式来求点线距离和线线距离。
再度延伸
(一 分 钟)
探索其他推导方法
“带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。
4. 教学评价
学生完成反思性学习报告,书写要求:
(1) 整理知识结构
(2) 总结所学到的基本知识,技能和数学思想方法
(3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因
(4) 谈谈你对老师教法的建议和要求。
作用:
(1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。
(2) 报告的写作本身就是一种创造性活动。
(3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。
5. 板书设计
(略)
6. 教学的反思总结
心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。
高中数学说课稿 篇10我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。
一、教学理念
新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质。”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。
因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。
二、教材分析
三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的'物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映。共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。
本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律是本节课的重点。
难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。
依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标。
三、教学目标
[知识与技能]
通过“五点作图法”正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律,能用五点作图法和图象变换法画出函数y=Asin(ωx+φ)的简图,能举一反三地画出函数y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的简图。
[过程与方法]
通过引导学生对函数y=sinx到y=sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法。
[情感态度与价值观]
课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想。在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。
四、教学过程(六问三练)
1、设置情境
《函数y=Asin(ωx+φ)的图象(第二课时)》说课稿。
文档为doc格式